初中数学 / 湘教版(2024) / 八年级上册(2024) / 第4章 三角形 / 4.2 命题与证明 / 编号:24251659

湘教(2024)八上4.2.3 定理,推论(课件+教案+学案+大单元整体教学)

日期:2025-10-31 科目:初中数学 类型:课件 来源:二一教育课件站
关键词:三角形,三角,形的,定理,证明,相等
预览图 0
中小学教育资源及组卷应用平台 学 科 数学 年 级 八 设计者 教材版本 湘教版 册、章 上册第4章 课标要求 1.理解三角形及其内角、外角、中线、高线、角平分线等概念,了解三角形的稳定性. 2.探索并证明三角形的内角和定理,掌握它的推论:三角形的外角等于与它不相邻的两个内角的和. 3.证明三角形的任意两边之和大于第三边. 4.理解全等三角形的概念,能识别全等三角形的对应边、对应角. 5.掌握基本事实:两边及其夹角分别相等的两个三角形全等. 6.掌握基本事实:两角及其夹边分别相等的两个三角形全等. 7.掌握基本事实:三边分别相等的两个三角形全等. 8.证明定理:两角分别相等且其中一组等角的对边相等的两个三角形全等. 9.理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上。 10.理解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两个底角相等;底边上的高线、中线及顶角平分线重合. 11.探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形. 12.探索等边三角形的性质定理:等边三角形的各角都等于60°。 13.探索等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形. 14.通过具体实例,了解定义、命题、定理、推论的意义. 15.结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念。会识别两个互逆的命题,知道原命题成立其逆命题不一定成立. 16.知道证明的意义和证明的必要性,知道数学思维要合乎逻辑,知道可以用不同的形式表述证明的过程,会用综合法的证明格式. 17.了解反例的作用,知道利用反例可以判断一个命题是错误. 18.通过实例体会反证法的含义. 19.能用尺规作图:已知三边、两边及其夹角、两角及其夹边作三角形;已知底边及底边上的高线作等腰三角形;过直线外一点作这条直线的平行线;作一条线段的垂直平分线;作已知角的平分线. 内容分析 本章是初中数学湘教版八年级上册第3章《三角形》,属于《义务教育数学课程标准》中的“图形与几何”领域中的“三角形”和“定义、命题、定理”。本章内容以三角形为核心,系统整合其定义、性质、分类及全等判定等知识,既承接平行线与相交线的基础,又为后续直角三角形、四边形等内容奠定方法论框架。教材通过“观察—操作—归纳”路径展开教学,如用小棒摆三角形、拼内角验证内角和定理,强化几何直观;同时注重逻辑推理渗透,例如通过三角形内角和定理推导外角性质,引导学生从特殊到一般归纳结论。此外,单元融入等腰三角形、等边三角形等特殊三角形研究,形成“一般—特殊”的认知结构,并通过全等三角形的判定(SSS、SAS等)培养演绎推理能力,体现“几何研究大观念”的单元整体设计理念。 学情分析 八年级学生已具备平行线、角度等几何基础,能初步运用逻辑推理解决简单问题,但对抽象概念的理解仍需直观支持。例如,在三角形三边关系中,学生易混淆“较短两边之和大于第三边”与“任意两边之和大于第三边”,需通过操作实验突破认知障碍;在全等三角形判定中,学生可能因忽视对应关系导致证明错误,需通过对比练习强化条件匹配意识。此外,学生合作探究能力较强,但独立思考与创新表达较弱,需通过角色扮演、开放性问题激发思维活力。 单元目标 (一)教学目标 1.认识三角形及三角形有关的概念,如三角形的顶点、边、角,会表示三角形,知道等腰三角形、等边三角形的概念. 2.掌握三角形的三边关系,能判断三条线段能否构成三角形. 3.认识三角形的高、角平分线、中线,能准确地表示出或画出相关图形. 4.探究并证明三角形的内角和定理,会应用定理进行相关计算. 5.会 ... ...

~~ 已预览到文档结尾了 ~~